
Revision Notes: Problem Solving Review 1

Validation and Verification

• Validation checks ensure that data input is reasonable and sensible. For
example, if a program asks for a user's age, a validation check might ensure that
the input is a positive number. Here are some specific types of validation
checks:

• Examples of Validation in Pseudocode

• Range Check

Description: Checks if a value falls within a specified range.

Example Scenario: Ensuring an exam mark entered is between 0 and 100.

Pseudocode:

REPEAT

 INPUT Mark

 IF Mark < 0 OR Mark > 100 THEN

 OUTPUT "Invalid mark. Please enter a value between 0 and 100."

 ENDIF

UNTIL Mark >= 0 AND Mark <= 100

• Presence Check

Description: Checks if some data has been entered.

Example Scenario: Making sure a user enters their name in a registration
form.

Pseudocode:

REPEAT

 INPUT Name

 IF Name = "" THEN

 OUTPUT "Name field cannot be empty. Please enter your name."

 ENDIF

UNTIL Name <> ""

• Length Check

Description: Checks for a maximum number of characters in the data
entered.

Example Scenario: Limiting a password to a maximum of 12 characters.

Pseudocode:

REPEAT

 INPUT Password

 IF LENGTH(Password) > 12 THEN

 OUTPUT "Password too long. Must be 12 characters or less."

 ENDIF

UNTIL LENGTH(Password) <= 12

• Type Check

Description: Checks that the characters entered are all numbers.

Example Scenario: Verifying that an input for age only contains numerical
digits.

Pseudocode:

FUNCTION IsNumber(input) : BOOLEAN

 //This function would use string manipulation techniques to

 //check if all characters in the 'input' string are digits 0-9.

 //Implementation details are omitted for brevity.

ENDFUNCTION

REPEAT

 INPUT Age

 IF NOT IsNumber(Age) THEN

 OUTPUT "Invalid age. Please enter numbers only."

 ENDIF

UNTIL IsNumber(Age)

• Combined Validation in a Loop

The sources offer an example of a validation check within a loop to ensure a
value is within a given range.

PRINT "Input a value between 0 and 100 inclusive"

INPUT Value

WHILE Value < 0 OR Value > 100

 PRINT "Invalid value, try again"

 INPUT Value

ENDWHILE

PRINT "Accepted: ", Value

This code snippet combines a range check with a loop to repeatedly prompt
the user for input until a valid value is entered.

• Verification checks ensure that data is entered correctly. For example, a
verification check might require a user to enter their password twice to ensure
that they have typed it correctly.

Programming Constructs

Sequence

• Sequence is a fundamental programming construct. It refers to the execution of
instructions one after the other in the order they appear in the program.

Selection

• Selection statements, allow the program to choose different paths of execution
based on certain conditions.

• Examples of selection statements include "CASE" statements and "IF"
statements.

Repetition (Loops)

• Repetition statements, also known as loops, allow a block of code to be
executed repeatedly until a certain condition is met.

• There are three loop structures:

o FOR...TO...NEXT loop: This loop structure iterates a predetermined
number of times.

o WHILE...ENDWHILE loop: This loop continues to iterate as long as a
specified condition remains true.

o REPEAT...UNTIL loop: This loop structure continues to iterate until a given
condition becomes true.

Data Handling

• Constants: Values that do not change during the execution of a program. They
are used to store fixed values that are used multiple times within the code,
improving readability and maintainability.

• Variables: Storage locations that hold values that can change during program
execution. They allow the program to work with and manipulate data.

• Arrays: Used to store collections of data of the same data type under a single
identifier. Each element in an array can be accessed using its index.

Section 5: Flowcharts and Trace Tables

• Flowcharts visually represent the flow of a program's execution using different
shapes to denote different actions or decisions.

• Trace tables are used to test algorithms and sections of code by tracking the
values of variables step-by-step as the code executes with different inputs.

o Trace Table Walkthrough

1. Below is a flowchart to determine the highest number of ten user
entered numbers

2. The algorithm prompts the user to enter the first number which
automatically becomes the highest number entered

3. The user is then prompted to enter nine more numbers. If a new
number is higher than an older number then it is replaced

4. Once all ten numbers are entered, the algorithm outputs which
number was the highest

5. Example test data to be used is: 4, 3, 7, 1, 8, 3, 6, 9, 12, 10

Trace table for Figure 1: Highest number

Count Highest Number Output

1 Enter ten numbers

 4 Enter your first number

2 3 Enter your next number

3 7 7

4 1

5 8 8

6 3

7 6

8 9 9

9 12 12

10 10 12 is your highest number

